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1 Introduction

Modeling and simulation efforts continue to expand in areas where they have been used for
some time, and they are also beginning to be used in new application areas. Modeling and
simulation have been heavily used in risk assessment for high-consequence systems, such as
nuclear power reactors, underground storage of radioactive wastes, and the nuclear weapon
stockpile. For complex engineered or natural systems, computer-based modeling and simulation is
required. Most of the mathematical models of these physical systems are given by systems of
coupled partial differential equations (PDE). For example, typical computer codes which
numerically solve these PDEs, and all of their auxiliary equations, can contain tens to hundreds of
thousands of lines of code. Similarly, the inputs and outputs of these codes have high
dimensionality, for example, hundreds of input and output quantities.

Computer codes of the size and complexity just indicated can be considered as �black boxes� in
the sense that very little is known concerning how the codes map inputs to outputs. For the present
discussion, we consider this mapping to be deterministic. By deterministic we mean that when all
necessary input data for the code are specified, the code produces only one value for every output
quantity. For very large codes of interest here, one mapping (i.e., one execution of the code)
could require hours or days on even the world�s fastest computers. To be of value to decision
makers using the results of the code for risk, reliability, or performance assessment, hundreds or
thousands of executions of the code are usually required.

For realistic systems, one must include uncertainties of various types in the mathematical model
of the system. Uncertainty could occur in parameters in the mathematical model, there could be
uncertainty in the accuracy of the mathematical model to describe the system of interest, or there
could be uncertainty in the sequence of possible events that could occur in a discrete event system.
During the last ten or so years the risk assessment community has begun to make a clear distinction
between aleatory and epistemic uncertainty. Aleatory uncertainty is also referred to in the literature 
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as variability, irreducible uncertainty, inherent uncertainty, and stochastic uncertainty. We use the
term aleatory uncertainty to describe the inherent variation associated with the physical system or
the environment under consideration. Epistemic uncertainty is also termed reducible uncertainty,
subjective uncertainty, and model form uncertainty. Epistemic uncertainty derives from some level
of ignorance, or incomplete information, of the system or the surrounding environment.

Methods to efficiently represent, aggregate, and propagate different types of uncertainty
through computational models are clearly of vital importance. The most widely known and
developed methods are available within the mathematics of probability theory, whether frequentist
or Bayesian estimation. Newer mathematics which extend or otherwise depart from probability
theory are also available, and are known collectively by the name Generalized Information Theory
(GIT). For example, possibility theory, fuzzy set theory, and evidence theory are three
components of GIT (see, for example, [1-4]).

Assessing and comparing the multiple methods available from probability theory, GIT, and
other methodologies has proven to be quite difficult. Moreover, the communities dedicated to risk
assessment, reliability engineering, and GIT have not communicated extensively  across these
disciplines to try to develop a common understanding of the relative advantages and disadvantages
of these available methods for problems of different types.

The purpose of this paper is to encourage a dialog between the risk assessment, reliability
engineering, and GIT communities on the subject of uncertainty representation, aggregation, and
propagation. Our emphasis will be on epistemic uncertainty and mixtures of epistemic and aleatory
uncertainty. We believe this emphasis is most appropriate because representation, aggregation, and
propagation of aleatory uncertainty is well established using traditional probability theory. The
chosen mechanism to encourage the dialog is two-fold:

1. Two specific mathematical model systems are described in Section 4. The first is a simple
algebraic system, which is, nonetheless, of sufficient complexity to engender significant
unanswered questions. The second is a somewhat more complex, but still analytically
solvable, dynamical system. It is intended that these two systems will serve as simplified
models of the kinds of systems which are our real focus.

2. A workshop will be sponsored by Sandia National Laboratories in the summer of 2002.
National and international leaders of the three communities indicated above will be invited to
participate in the workshop, as well as other interested individuals. The two problem sets are
intended to serve as a common focus for experimentation, discussion, and comparison of
mathematical approaches.

In Section 2 we outline our view of the role of uncertainty representation, aggregation, and
propagation within the overall context of computational analysis support for decision. In Section 3,
we briefly discuss the various forms of uncertainty present in such systems, and briefly mention
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some of the mathematical representations available from the probabilistic, GIT, and other
communities. In Section 4, we describe the two problem sets.

2 Simulation, Uncertainty, and Decision Support

The appropriate incorporation of uncertainty into the analyses of complex systems is a topic of
importance and widespread interest. The need for such incorporation arises in many contexts. The
particular context under consideration here is shown in Fig. 1. We assume we have a mathematical
model of a physical system specified. We consider the model to be composed of three major
elements; inputs, simulator, and outputs. The inputs are composed of all specifications needed for
the simulator to produce one realization of the outputs. A model of the type considered here can be
formally represented by the functional formalism: y = f(x), where x = [x1, x2, ... , xm] is a
vector of inputs, f corresponds to the simulator, and y = [y1, y2, ..., yn] is a vector of outputs.
Examples of inputs in the systems of interest are: parameters representing physical characteristics
in the system, the geometric description of the system, and initial and boundary conditions for
PDEs. In practice, the dimensionality m and n of x and y, respectively, can be quite large, for
example one hundred or more. The simulator f is usually given by a large computer code and the
cost of one evaluation of f, for a specified x, can be quite high, for example, hours or days on
massively parallel computers. One evaluation of f could be considered, for example, as one steady
state solution of a system of PDEs, or it could be considered as the time dependent response of the
system. In this later case we would have y(t) = f(x; t).

Inputs
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Analysis
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Figure 1: Propagation of uncertainty through mathematical models in a decision
support context.
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The simulator input parameters x are assumed to be characterized from information given
concerning the parameters. The challenge problems discussed later will directly address issues in
the representation and aggregation of information concerning the parameters. The information can
be of different types and from a number of sources, including measurements and expert opinion,
as discussed in more detail in Sec. 3. Given a representation and aggregation of the information
into the vector x, the vector is propagated through the simulator f. As mentioned above, we
assume f is deterministic; that is, for one realization of x, there is only one realization of y, but
that realization could be a function of space and/or time. Given a representation and aggregation of
uncertainty in x, and the propagation of the representation through f, we also wish to address the
issue of how to interpret the resultant uncertainty representation in y.

As indicated in Fig. 1, we assume the analysis of the physical system was conducted for the
purpose of making or aiding in a decision, or series of decisions. These decisions could be, for
example, in engineering design or performance optimization, safety or reliability assessment of an
engineered system, or an environmental regulatory decision. Although many analyses may be
conducted before the decision maker interprets the results from the analysis, we presume a decision
is made with regard to whether the analysis satisfies requirements. We stress that the decision is
made on the requirements for the analysis, not the requirements for the system performance. For
example, the analysis may be adequate to show that the engineered system does not satisfactorily
meet performance requirements. Although the analysis is adequate, the decision with regard to the
engineered system may be that the system will not be built. An similar example is, given the
uncertainties in the system being analyzed, the predicted uncertainty in the system performance
may be unacceptably large. As with the previous example, the analysis is adequate, but the system
must be redesigned so that predicted uncertainty of the system performance is reduced to an
acceptable level. This will be discussed more in Section 3.

If further analysis is required, then different types of activities could be pursued. One of the
most common is sensitivity analysis. Whether the physical system satisfies requirements or not, a
sensitivity analysis could be conducted to determine which of the the uncertainties in x results in
the largest change in the uncertainties in y. The rank order of the effects of the uncertainties in x
could be with regard to a single element of y, or some functional of the elements of y. Another
type of activity could be the updating of the inputs or the simulator using Bayesian inference. The
last example may lead to the decision to conduct additional physical experiments to better determine
the uncertainty, or to reduce the uncertainty, in selected input quantities. For example, the decision
maker may conclude, based on the analysis, that additional information is required for certain
physical parameters in x. As a result, additional experiments could be conducted to reduce the
epistemic uncertainty in these elements of x.

The schema presented here, including all of its components, is itself rather complex. While we
are aware that the overall context is commonly driven by decision support, we also recognize the
difficulty of focusing on all components simultaneously. As a result, we are most interested in
concentrating attention on: uncertainty representation for inputs, aggregation of uncertainty
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information from a wide variety of sources, propagation of uncertainty, and uncertainty
interpretation in the output. While the participants may choose to deal with the overall decision
support context, we strongly encourage participants to address how a method or approach can
handle representation, aggregation, propagation, and interpretation of results in particular.

3 Uncertainty Representation and Aggregation

Here we briefly discuss some of the available types, sources, and mathematical representations
of uncertainty.

3.1 Uncertainty Types

One of the most widely recognized distinctions in uncertainty types is between aleatory and
epistemic uncertainty. We use the term aleatory uncertainty to describe the inherent variation
associated with the physical system or the environment under consideration.[5-15] Sources of
aleatory uncertainty can commonly be singled out from other contributors to uncertainty by their
representation as randomly distributed quantities that can take on values in an established or known
range, but for which the exact value will vary by chance from unit to unit or from time to time. The
mathematical representation most commonly used for aleatory uncertainty is a probability
distribution. When substantial experimental data are available for estimating a distribution, there is
no debate that the correct model for aleatory uncertainty is a probability distribution. Propagation of
these distributions through a modeling and simulation process is well developed and is described in
many texts.

Epistemic uncertainty derives from some level of ignorance of the system or the environment.
We use the term epistemic uncertainty to describe any lack of knowledge or information in any
phase or activity of the modeling process.[5-15] The key feature that this definition stresses is that
the fundamental cause is incomplete information or incomplete knowledge of some characteristic of
the system or the environment. As a result, an increase in knowledge or information can lead to a
reduction in the predicted uncertainty of the response of the system, all things being equal.
Examples of sources of epistemic uncertainty are when there is little or no experimental data for a
fixed (but unknown) physical parameter, limited understanding of complex physical processes,
and the occurrence of fault sequences or environmental conditions not identified for inclusion in the
analysis of the system. As opposed to aleatory uncertainty, the mathematical representation of
epistemic uncertainty has proven to be much more of a challenge. In fact it is our belief that the
preeminent issue in uncertainty analysis of systems is the representation, aggregation, and
propagation of epistemic uncertainty, as well as mixtures of epistemic and aleatory uncertainty. Our
challenge problems have been carefully designed to reflect these fundamental issues.

For any particular physical system of interest which is mathematically modeled, we can
distinguish between parametric uncertainty and model form uncertainty. Parametric uncertainty  can
be entirely aleatoric in nature, for example, stochastic parameters in a specified mathematical
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model. Model form uncertainty is fundamentally epistemic in nature because it concerns actual
structural changes in a model, or selection of one model among a class of models. While
parametric and model form uncertainty commonly occur together in realistic analyses, the challenge
problems posed here only address parametric uncertainty.

3.2 Types of Information Sources

It is not unusual for different parametric inputs to be determined from quite different sources,
and on that basis to take very different forms. Some of the types of uncertainty sources that occur
in modeling and simulation of physical systems include:

1) Strong Statistical Information: Sometimes large quantities of experimental data are available,
sufficient to derive or convincingly verify a particular statistical model.

2) Sparse Statistical Information: More commonly, only a small collection of experimental data
points might be available, and collection of further data points might be very expensive or
impossible to obtain. Further, the available experimental data may provide only indirect or
inferential information on the parameters actually used in a particular analysis. In these
cases, attempts to fit particular statistical models will leave a substantial residue of epistemic
uncertainty.

3) Intervals: Upper and lower bounds or graded levels of belief on parametric values can be
provided, typically from expert elicitation. Moreover, when intervals are available,
sometimes multiple intervals are provided, for example from different experts or teams of
experts. These collections of intervals together could be coherent, partially contradictory, or
even completely contradictory.

Real problems typically present a mixture of such sources across different parameters.
Examples of this include: interval data might be available from the sparse output of instrument
measurements; the mean of a normal distribution could be elicited from an expert; parameters of
another distribution fit with high precision from a large collection of measured point data; and
finally, the mean of another distribution may only be presumed to lie within an interval. Also, in
real situations, the uncertainty in a given input parameter might be independently estimated from
several completely different sources and thus have completely different mathematical
representations. Thus, there is the challenge of aggregating these disparate representations into a
single representation, which thereby might have a hybrid mathematical form.

Finally, we note that sometimes purely qualitative information is available, for example
provided by experts in the form of linguistic information such as a parameter being �high� or �very
low�, or a component being �highly likely to fail�. While we note that there are components of GIT
dedicated to representing linguistic uncertainty from such assessments, these are not of interest in
this effort.
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4 Challenge Problem Sets

We now introduce our challenge problems and discuss the overall methodology for
approaching the problem sets. We wish to foster an open exchange of information among
proponents and practitioners of all methods. Consequently, we will neither advocate any particular
methodology, nor will we present solutions for the problems stated in Sections 4.3 and 4.4.

4.1 Formation of the Problem Sets

The problem sets have been crafted to focus on the issues of representation, aggregation, and
propagation of uncertainty through mathematical models. We believe that a synthesis of the
strategies is needed that have been developed separately within various communities to address the
issues embodied in these problems. It is our opinion that if some coherence concerning these
simple problem sets can be achieved, then there is some hope that these methods could be extended
to realistic target systems. The two problem sets are given by:

1. A simple algebraic system of the form y = (a + b)a

2. A simple dynamic system of the form of an initial value problem given by an linear ordinary
differential equation.

Each problem set is intended to serve as a simplified model of the target software applications.
In particular, rather than being black boxes, they are both �open boxes�. While the form of
Problem Set 1 is simple in the extreme, we believe that nevertheless there are substantial questions
about how these diverse communities would approach it given the type of information provided.
While Problem Set 2 has a ready analytical solution, we encourage participants to test their
methods by considering the numerical solution to the ODE as a black box.

4.2 Challenge Format

Before the specific problem sets are given, some comments are appropriate concerning how a
dialog amongst interested colleagues might proceed:

* Each of the problem sets is precisely posed, but the information concerning the parameters is
sparse. No further information is available beyond that given and no implications are made
for further assumptions. For example, unless specified, we do not state or imply that a
parameter is necessarily a random variable, or that any new measurements might be available.
We discourage participants from introducing additional assumptions concerning the
parameters. However, if this is done, it must be explicitly stated.

* The posed problem sets primarily focus on uncertainty modeling, and not decision support.
For example, we do not specify the source or nature of the numerical inputs, nor the nature
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of the requirements for a decision problem. Participants may choose to address such issues
as sensitivity analysis and decision support; however, we request that they focus on
uncertainty representation, aggregation, propagation, and results interpretation.

* The main reason for this request is to concentrate the discussion. Another is to reflect the real
conditions under which risk analysts and engineering modelers work, and the necessity in
some domains to avoid bias by separating the science and mathematics of modeling from the
politics or regulatory repercussion of decision making.

* We believe that it is fruitful to approach Problem Set 2 using either the analytical solution to
the ODE or a numerical solution to the ODE. In this way, Problem Set 2 would be
approached with more of the character of a black box. In other words, one would not assume
any knowledge of the system characteristics or response. The only information obtained from
the analytical or numerical solution is the mapping of inputs to outputs using sampling-based
methods for each time-dependent realization of the system response.

4.3 Algebraic Problem Set

The form of the mathematical model describing the physical system is known with certitude,
i.e., there is no uncertainty about the model form. Only parametric uncertainty in the model is
considered. Let y be the system response, and let a and b be continuous parameters in the
model. Let the model of the physical process be given by

  y = a + b
a

(1)

The parameters a and b are independent, i.e., knowledge about the value of one parameter
implies nothing about the value of the other. Both a and b are positive real numbers. The task for
each problem in the sequence is to quantify the uncertainty in y given the information concerning
a and b. Stated differently, What can be ascertained about the response of the system y, given
only the stated information concerning a and b?

The sequence of problems begins with very little information concerning a and b so that they
are only known to lie within specified intervals. This situation is intended to reflect large epistemic
(reducible) uncertainty. Information is added in each subsequent problem in the sequence by way
of more specificity concerning the parameters. Information of different types is incrementally
added concerning the parameters for each subsequent problem in the sequence. The information
given may be mutually supportive, or some of it may be contradictory to some degree. Midway
through the sequence of problems, sufficient information is added so that the uncertainty in one of
the parameters, b, is characterized by a probability distribution. This type of uncertainty is referred
to as aleatory (irreducible) uncertainty.

For each problem in the sequence only the stated information concerning a and b is available.

- 8 -



For an individual example problem one cannot infer any information from the problem preceding it
or following it in the sequence. If the stated information concerning a and b cannot be represented
precisely as given, then any assumptions or approximations that are made must be clearly stated.

Six problems are specified in the sequence. The sequence is structured by the type and quantity
of information specified for a and b. The structure of the sequence is as follows:

Problem 1: a is in an interval, b is in an interval.
Problem 2: a is in an interval, b is characterized by multiple intervals.
Problem 3: a is characterized by multiple intervals, b is characterized by multiple intervals.
Problem 4: a is in an interval, b is specified by a probability distribution with imprecise 

parameters.
Problem 5: a is characterized by multiple intervals, b is specified by a probability distribution 

with imprecise parameters.
Problem 6: a is in an interval, b is a precise probability distribution.

The solution to Problem 1 is straightforward. However, a unique and provably correct solution to
Problems 2 through 6 cannot be demonstrated. The description of each problem in the sequence
follows.

Problem 1: a and b are contained in the closed intervals A and B, respectively, where

  A = [a1, a2] and B = [b1, b2] . (2)

Problem 2: a is contained in the closed interval A, and the information concerning b is given
by n independent sources of information. Each source specifies a closed interval Bi of possible
values for b. One has

  A = [a1, a2] and Bi = [b1
i , b2

i ] for i = 1, 2, ..., n . (3)

All of the n sources for b are equally credible. Given this information, consider the following
family of problems:

2a) Bi , i=1,2,...,n, is a consonant collection of intervals, i.e., the intervals are nested.
Without loss in generality, the intervals can be ordered so that

   Bi ⊆ Bi + 1 for i = 1, 2, ..., n � 1 . (4)

2b) Bi , i=1,2,...,n, is a consistent collection of intervals, i.e., there exists a non-empty
interval which is a subinterval of every interval in the collection. This can be written as

   ∩i Bi ≠ ∅ . (5)
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2c) Bi , i=1,2,...,n, is an arbitrary collection of intervals, i.e., there is no assumed overlap or
relationship among any of the intervals in the collection.

Problem 3: The information concerning a is given by m independent sources of information.
Each source specifies a closed interval Ai that contains the value for a. The information
concerning b is given by n independent sources of information. Each source specifies a closed
interval Bj of possible values for b. One has

  Ai = [a1
i , a2

i ] for i = 1, 2, ..., m and Bj = [b1
j , b2

j] for j = 1, 2, ..., n . (6)

The m sources for a and the n sources for b are all equally credible. Given this information,
consider the following family of problems:

3a) Ai , i=1,2,...,m, and Bj , j=1,2,...,n, are consonant collections of intervals, i.e., the
intervals for a are nested and the intervals for b are nested. Without loss in generality, the
intervals can be ordered so that

   Ai ⊆ Ai + 1 for i = 1, 2, ..., m � 1 and Bj ⊆ Bj + 1 for j = 1, 2, ..., n � 1 . (7)

3b) Ai , i=1,2,...,m, and Bj , j=1,2,...,n, are consistent collections of intervals, i.e., for
each collection there exists a nonempty interval which is a subinterval of every interval in the
collection. This can be written as

   ∩i Ai ≠ ∅ and ∩ j Bj ≠ ∅ . (8)

3c) Ai , i=1,2,...,m, and Bj , j=1,2,...,n, are arbitrary collections of intervals, i.e., there is
no assumed overlap or relationship among any of the intervals in the two collections.

Problem 4: a is contained in the closed interval A, and b is given by a log-normal probability
distribution. One has

   A = [a1, a2] and ln b ∼ N(µ,σ) . (9)

The value of the mean, µ, and the standard deviation, σ, are given, respectively, by the closed
intervals

   M = [µ1,µ2] and S = [σ1,σ2] . (10)

Problem 5:  The information concerning a is given by m independent sources of information.
Each source specifies a closed interval Ai that contains the value for a. The information
concerning b is given by n independent sources of information. Each source agrees that b is

- 10 -



given by a log-normal probability distribution, however, each source specifies closed intervals,
Mj and Sj, of possible values of the mean µ and the standard deviation σ, respectively. One has

   Ai = [a1
i , a2

i ] for i = 1, 2, ..., m and ln b ~ N(µ j,σ j) for j = 1, 2, ..., n (11)

The value of each mean, µj, and standard deviation, σj, are given, respectively, by the closed
intervals

   M j = [µ1
j ,µ2

j] and Sj = [σ1
j ,σ2

j] for j = 1, 2, ..., n (12)

The m sources of information for a are equally credible, as are the n sources for µ and σ. Given
this information, consider the following family of problems:

5a) Ai , i=1,2,...,m, is a consonant collection of intervals, i.e., the intervals are nested.
Without loss in generality, the intervals can be ordered so that

   Ai ⊆ Ai + 1 for i = 1, 2, ..., m � 1 . (13)

 Each of Mj and Sj , j=1,2,...,n, is consonant collections of intervals, i.e., the intervals are
nested. Without loss in generality the intervals can be ordered so that

   M j ⊆ M j + 1 and Sj ⊆ Sj + 1 for j = 1, 2, ..., n � 1 . (14)

5b) Ai , i=1,2,...,m, is a consistent collection of intervals, i.e., there exists a non-empty
interval which is a subinterval of every interval in the collection. This can be written as

   ∩i Ai ≠ ∅ . (15)

 Each of Mj and Sj , j=1,2,...,n, is consistent collections of intervals, i.e., for each collection
there exists a nonempty interval which is a subinterval of every interval in the collection. This can
be written as

   ∩ j M j ≠ ∅ and ∩ j Sj ≠ ∅ . (16)

5c) Ai , i=1,2,...,m, is an arbitrary collection of intervals, i.e., there is no assumed overlap
or relationship among any of the intervals in the collection.  Each of Mj and Sj , j=1,2,...,n, is
arbitrary collections of intervals, i.e., there is no assumed overlap or relationship among any of
the intervals in the two collections.

Problem 6: a is contained in the closed interval, A, and b is given by a lognormal probability
distribution. One has
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   A = [a1, a2] and ln b ∼ N(µ, σ) . (17)

The values of the mean µ and the standard deviation σ are precisely known.

Appendix A contains the suggested numerical values for each problem so that solutions from
different participants can be directly compared.

4.4 ODE Problem

Consider a simple linear oscillator given by the mass-spring-damper system acted on by the
forcing function Y cos ωt, shown in Fig. 2. The displacement and the velocity of the mass relative
to a fixed reference frame are given by x and x , respectively. The equation of motion for the mass
is given by:

   mx + cx + kx = Y cos ωt (18)

where m is the mass of the cart, k is the spring constant of the linear spring, and c is the
damping coefficient of the linear damper. Y and ω are the amplitude and frequency, respectively,
of the excitation acting on the mass. The initial conditions for Eq. (22) are precisely known to be
x = x  = 0. After imposing the specified initial conditions, the analytical solution to Eq. (22) is
given by[16]

   x(t) = (A cos ωdt + B sin ωdt)exp � ct
2m + Y

Ccos (ωt � α) (19)

where

   A = � Y
Ccos α (20)

   B = � Y
Cωd

ω sin α + c
2m cos α (21)

   C = k � mω2 2
+ cω

2
(22)

   ωd = k
m � c

2m
2

(23)

   α = tan� 1 cω
k � mω2 (24)

ωd is the damped natural frequency of the system and α is the phase angle of the steady-state
response relative to the excitation function. Note that for α the principle value of the arctangent
function is the value of interest.
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Y cos ωtm

k

c

x, x

Figure 2: Mass-Spring-Damper System Acted on by an Excitation Function

The parameters m, k, c, Y, and ω are independent, i.e., knowledge about the value of one
parameter implies nothing about the value of the other. The five parameters are all positive real
numbers. The task for this problem is to quantify the uncertainty in the steady-state magnification
factor Ds, given only the stated information for the problem. Ds is defined as the ratio of the
amplitude of the steady-state response of the system to the static displacement of the system
induced by a force of magnitude Y. Therefore, one has

  Ds = X
Y kY k

(25)

where X is the amplitude of the steady-state response of the system, and Y/k is the static
displacement of the system induced by a force of magnitude Y. The steady-state magnification
factor can be analytically derived as[16]

   Ds = k

k � mω2 2
+ cω 2

(26)

If the stated information concerning the parameters m, k, c, Y, and ω cannot be represented
precisely as given, then any assumptions or approximations that are made must be clearly stated.
For example, if a parameter is given as a single closed interval, and the assumption is made that the
value is a random variable occurring within the interval, then this assumption must be clearly
stated.

The information for each parameter is given in the following discussion.

Parameter m: m is given by a triangular probability distribution defined on the interval [mmin,
mmax] with a mode of mmod. The values of mmin, mmod, and mmax are precisely known.

- 13 -



Parameter k: The information concerning k is given by n independent sources of information.
Each source agrees that k is given by a triangular probability distribution; however, each source
specifies closed intervals, Mini, Modi, and Maxi of possible values of the minimum, kmin, mode,
kmod, and maximum value, kmax, respectively. The relationship between these values is

   kmin ≤ kmod ≤ kmax and kmin < kmax (27)

The values of  kmin, kmod, and kmax are contained, respectively, in the closed intervals

  Mini = [a1
i ,a2

i ], Modi = [h1
i ,h2

i ] and Maxi = [b1
i ,b2

i ] for i = 1, 2, ... n . (28)

The n sources of information for k are equally credible. Mini, Modi, and Maxi are consistent
collections of intervals, i.e., each collection has a nonempty interval which is a subinterval of
every interval in the collection. This can be written as

   ∩i Mini ≠ ∅, ∩i Modi ≠ ∅, and ∩i Maxi ≠ ∅ . (29)

Parameter c: The information concerning c is given by q independent sources of information.
Each source specifies a closed interval Cj of possible values for c. One has

  Cj = [c1
j, c2

j] for j = 1, 2, ... q . (30)

All of the q sources for C are equally credible. Ci is an arbitrary collection of intervals, i.e.,
there is no assumed overlap or relationship among any of the intervals in the collection.

Parameter Y: Y is contained in the closed interval Y, where

   Y = [Y1, Y2] . (31)

Parameter ω: ω is given by a triangular probability distribution defined on the interval [ωmin,
ωmax] with a mode of ωmod. The values of ωmin, ωmod and ωmax are contained, respectively,
in the closed intervals

   Min = [α1,α2], Mod = [η1,η2] and Max = [β 1,β 2] . (32)

 The relationship between these values is

   ωmin ≤ ωmod ≤ ωmax and ωmin < ωmax (33)

 Appendix B contains the suggested numerical values for each parameter so that solutions from
different participants can be directly compared.
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Appendix A
Numerical Values for the Algebraic Problem Set

Problem 1

A = [0.1, 1.0]
B = [0.0, 1.0].

Problem 2a

A = [0.1, 1.0]
B1 = [0.6, 0.8], B2 = [0.4, 0.85], B3 = [0.2, 0.9], and B4 = [0.0, 1.0].

Problem 2b

A = [0.1, 1.0]
B1 = [0.6, 0.9], B2 = [0.4, 0.8], B3 = [0.1, 0.7], and B4 = [0.0, 1.0].

Problem 2c

A = [0.1, 1.0]
B1 = [0.6, 0.8], B2 = [0.5, 0.7], B3 = [0.1, 0.4], and B4 = [0.0, 1.0].

Problem 3a

A1 = [0.5, 0.7], A2 = [0.3, 0.8], A3 = [0.1, 1.0],
B1 = [0.6, 0.6], B2 = [0.4, 0.85], B3 = [0.2, 0.9], and B4 = [0.0, 1.0].

Problem 3b

A1 = [0.5, 1.0], A2 = [0.2, 0.7], A3 = [0.1, 0.6],
B1 = [0.6, 0.6], B2 = [0.4, 0.8], B3 = [0.1, 0.7], and B4 = [0.0, 1.0].

Problem 3c

A1 = [0.8, 1.0], A2 = [0.5, 0.7], A3 = [0.1, 0.4],
B1 = [0.8, 1.0], B2 = [0.5, 0.7], B3 = [0.1, 0.4], and B4 = [0.0, 0.2].

Problem 4

A = [0.1, 1.0],
M = [0.0, 1.0], and S = [0.1, 0.5].

- 16 -



Problem 5a

A1 = [0.5, 0.7], A2 = [0.3, 0.8], A3 = [0.1, 1.0],
M1 = [0.6, 0.8], M2 = [0.2, 0.9], and M3 = [0.0, 1.0],
S1 = [0.3, 0.4], S2 = [0.2, 0.45], S3 = [0.1, 0.5].

Problem 5b

A1 = [0.5, 1.0], A2 = [0.2, 0.7], A3 = [0.1, 0.6],
M1 = [0.6, 0.9], M2 = [0.1, 0.7], and M3 = [0.0, 1.0],
S1 = [0.3, 0.45], S2 = [0.15, 0.35], S3 = [0.1, 0.5].

Problem 5c

A1 = [0.8, 1.0], A2 = [0.5, 0.7], A3 = [0.1, 0.4],
M1 = [0.6, 0.8], M2 = [0.1, 0.4], and M3 = [0.0, 1.0],
S1 = [0.4, 0.5], S2 = [0.25, 0.35], S3 = [0.1, 0.2].

Problem 6

A = [0.1, 1.0]
µ = 0.5, σ = 0.5.
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Appendix B
Numerical Values for the ODE Problem

Values for m
mmin = 10, mmod = 11, and mmax = 12

Values for k
Min1 = [90, 100], Min2 = [80, 110], Min3 = [60, 120]
Mod1 = [150, 160], Mod2 = [140, 170], Mod3 = [120, 180]
Max1 = [200, 210], Max2 = [200, 220], Max3 = [190, 230]

Values for c
C1 = [5, 10], C2 = [15, 20], C3 = [25, 25]

Values for Y
Y = [70, 100]

Values for ω
Min = [2, 2.3], Mod = [2.5, 2.7], Max = [3.0, 3.5]
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